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The title radicals, thought to be of prime importance in the 
genesis of interstellar organic molecules, are  accessible in the 
gas phase by neutralization of the corresponding C,N+ ions 
(n = 2-5) using tandem mass spectrometry methods (new 

tralization-reionization mass spectrometry). Collision-induced 
dissociation reactions of mass-selected C,N+ are  in keeping 
with the connectivity of a "carbon rod" bearing a nitrogen 
atom at one terminus. 

In a series of papers we have recently demonstrated that the even- 
numbered polycarbon molecules : C = C = S '), S = C = C = S 2 ) ,  
0 =c = c= s3, s =c = c=c =c = s'), 0 =c =c=c = c = S 4 ) ,  

O=C=C=C=C=Os) ,  and S = C = C = C = C = C = C = S 6 )  are in- 
deed stable molecules in the gas phase'). All these - and many 
other elusive molecules - became accessible from the correspond- 
ing radical ions by using the technique of neutralization-reioniza- 
tion mass spectrometry (NRMS)? 

In this paper wc report on the successful gas-phase generation 
and characterization of the whole series of polycarbon nitrides C,N' 
(n = 2-5) and their corresponding cations C,N+ (n  = 2-5) by 
using tandem mass spectrometry techniques'). Several of these spe- 
cies have been discussed in the past in quite a different context. For 
example, both theory and experiment indicate the existence of two 
isomers of C2N+ and C2N', i.e. the connectivities CCN+/' and 
CNC+" ''I. For CsN + a combined experimental/theoretical study") 
points to two minima on the potential energy surface: The more 
stable species corresponds to CCCN+ with a cyclic isomer ca. 1 eV 
higher in energy. For the isocyanid form CCNC+, which is pre- 
dicted to lie 0.15-0.5 eV above the ground state, no conclusive 
experimental support is available. Numerous studies are concerned 
with the possible existence of C,N' isomers. For example, ab initio 
MO calculations 12) and laboratory-based experiments'3) support 
the detection and assignment of the cyanoethynyl radical CCCN' 
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as an interstellar speciest4). While the higher numbered carbene ions 
C,Nf (n 2 4) were generated by several techniques and their gas- 
phase chemistry probed using ion/molecule reactions "), no data 
exist to the best of our knowledge for the corresponding radicals 
C,N'. The latter, as several other polycarbon molecules having the 
general structure X(C,)Y (X, Y: lone electron pair, H2, 0, S; n 2 
2), are believed to play a crucial role in the genesis of interstellar 
organic compounds 16). 

As reported earlier 17) 70-eV electron impact ionization of dicy- 
anoacetylene (1) or dicyanodiacetylene (2) affords by direct cleavage 
processes the complete series C,N+ ions (Scheme 1). 

The mass selection of a given C,N+ species (n = 2 - 5) by using 
B(l)E(l) in a tandem experiment"), followed by collisional 
activation") of the 8-keV translational energy beam with helium as 
collision gas [SOX transmission (T)] ,  afforded collisional activation 
(CA) mass spectra which clearly reflect the connectivity of the spe- 
cies of interest. This is exemplified by the CA mass spectrum of 
C2N+ (m/z 38). The decomposition pattern given in Scheme 2, and 
in particular the signal corresponding to C2+' (m/z 24), is only 
compatible with the connectivity CCN+ and not with that of the 
isomeric, thermochemically more stableIoh) form CNC +. Obviously, 
C2N+ is formed from I+'  without structural reorganization'"). 
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Structurally characteristic CA fragmentation patterns are also 
observed for the other C,N+ species. For example, the CA spectrum 
of C3N+ contains the following signals: C2N+ (85?40), C3+' (7%), 
CN+ (2%), C3+'  YO), and C+' (1 YO). For C4N+ we obtain under 
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Figure 1. NR mass spectra (xenon/oxygen) of C.N+: (a) C2N+; (b) C3N+; (c) C4N+; (d) C5N+ 

CA conditions signals for C3N+ (7%), C4+' (4%), CzN+ (So/), Cs+' 
(78%), CN+ (l'Yo), Cz+' (2%), and C+ '  (<  YO). Analogously, the 
CA spectrum of CsN+ is also dominated by direct bond-cleavage 
processes giving rise to the following ionic species: C4N+ (23%), 
Cs+' (4 %), C3N+ (3%), C4+' (22%), CzN+ (40%), and C,+' (7%); 
CN+, C2+', and C+' are of less importance (< 1 %). We note the 
preferred loss of C3 from C5N+, which under collision-free condi- 
tions amounts to > 96%. Interestingly, loss of C3 is also the major 
process for the dissociation of cationic and anionic all-carbon clus- 
ters C,+'/C;* 2'1, and this has been ascribed to the particular ther- 
mochemical stability of the C3 cluster 22). Similarly, the particular 
stability of C:.23) together with the favorable heat of formation of 
CN' accounts for the dominance of this particular dissociation path 
in the CA and metastable-ion spectrum of C4N+ (78% and > 95%, 
respectively). 

If the mass-selected C.N+ species are subjected to an NRMS 
experiment 8,9)(xenon 80% T/oxygen 80%T), one obtains in all cases 

very abundant recovery signals (Figure 1 a - d); moreover, the frag- 
mentation pattern is often close if not identical with the one ob- 
served in the CA mass spectra. The fact that the relative intensities 
of the signals in the NR spectra (Figure 1) and the CA mass spectra 
(see text) for C,N+ do not exactly match is due to reionization of 
smaller neutral fragments generated by either collision-induced dis- 
sociation (in the collision cell) of C.N+ or, alternatively, by frag- 
mentation of a fraction of the C,N' molecules prior to reionization. 
In any case, we can safely conclude that the polycarbon nitride 
radicals C,N' (n = 2 - 5)  are stable molecules in the gas phase. The 
connectivity of both the radicals and the cations C,N+ most likely 
corresponds to a "carbon rod" bearing a nitrogen atom at one 
terminus. 
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